
Ambient Temperature Preservation of Human FFPE Tumor–Derived Nucleic Acids with Encapsulation Technology

Lee Organick¹, Michael Blas¹, Benjamin Haibe-Kains², James Banal¹, Celeste Yu², Farnoosh Abbas-Aghababazadeh², Philippe L. Bedard²

Cache DNA, San Carlos USA
University Health Network, Princess Margaret Cancer Research Centre, Toronto Canada

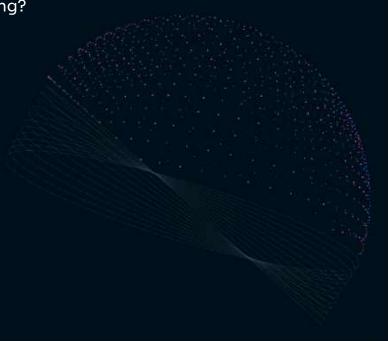
Conflict of Interest Disclosure

It is a set of the following authors are employees of Cache DNA and hold stock:

- Lee Organick
- Michael Blas
- James Banal

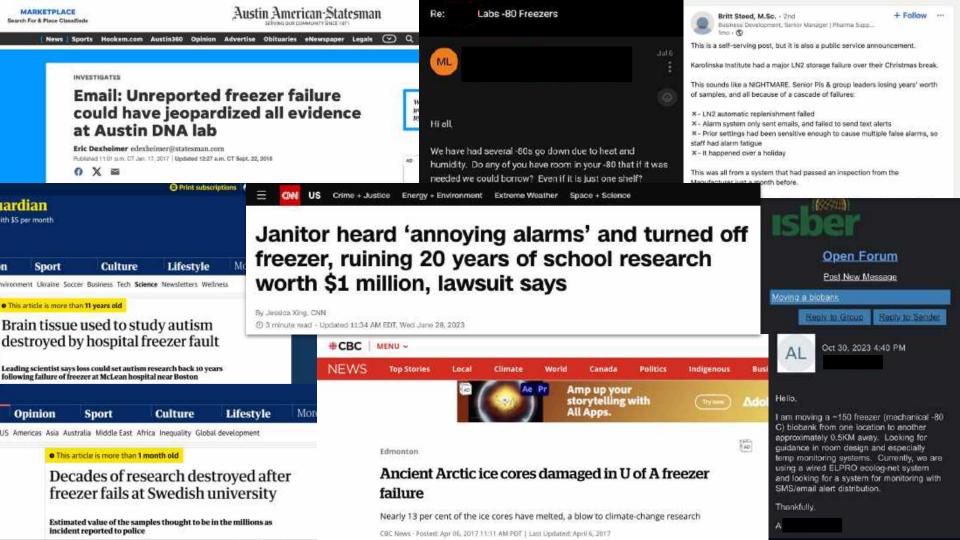
We following authors have **no conflicts of interest** to declare:

- Benjamin Haibe-Kains
- Celeste Yu
- Farnoosh Abbas-Aghababazadeh
- Philippe L. Bedard


Lee

Farnoosh

Agenda: Ambient Temperature Preservation of Nucleic Acids

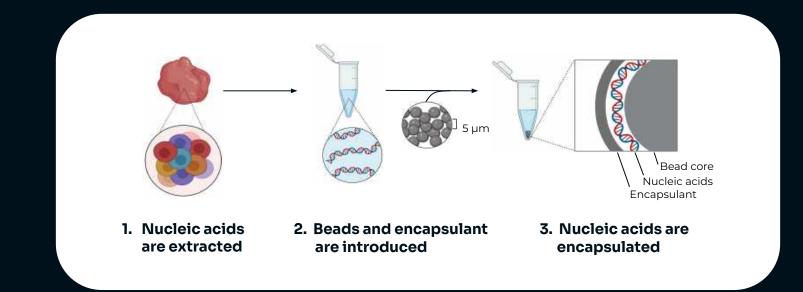

- What technical challenges are biobanks currently facing?
- Introduction to Caching
- Collaboration with UHN and Cache
- Questions

What technical challenges are biobanks currently facing?

- 1. Freezer logistics
 - Maintenance
 - Monitoring and responses
 - Redundant aliquots to prevent freeze-thaws
 - Emergencies and accidents

What technical challenges are biobanks currently facing?

- 1. Freezer logistics
 - Maintenance
 - Monitoring and responses
 - Emergencies and accidents
 - Redundant aliquots to prevent freeze-thaws
- 2. Running out of space or electrical capacity
- 3. Nucleic acids degrade over time
 - Main causes of degradation are water and air¹
 - DNA in FFPE degrades 2x faster than extracted DNA²

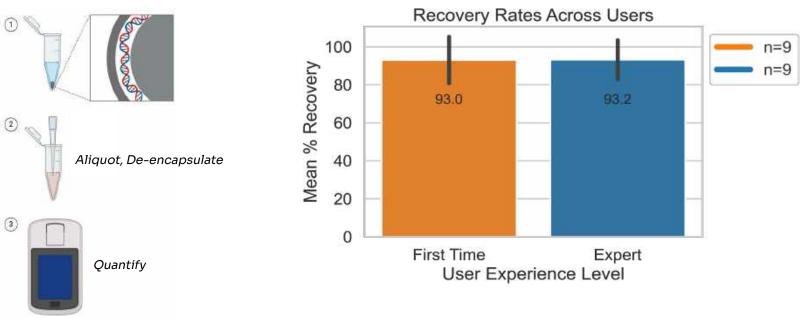

- 1. Colotte *et al.* Adverse Effect of Air Exposure on the Stability of DNA Stored at Room Temperature. *Biopreservation and Biobanking,* <u>https://doi.org/10.1089/bio.2010.0028</u>
- Guyard et al. DNA degrades during storage in formalin-fixed and paraffin-embedded tissue blocks. Virchows Arch 471, 491–500 (2017). https://doi.org/10.1007/s00428-017-2213-0

What's wrong with alternative ambient temperature nucleic acid preservation methods?

There are very few storage solutions available. Most are not scalable (to store or retrieve), too expensive, or do not offer adequate protection.

	Additives	Lyophilization	Micro-scale encapsulation	Macro-scale encapsulation
Storage Method	Mix in additive Optional: dehydrate	Complex configurations Specialized equipment Large footprint	Multi-step process Standard lab equipment Benchtop footprint	Samples must be shipped to encapsulator
Recovery Method	Rehydration (1-10 minutes)	Rehydration (1-10 minutes)	De-encapsulation (10-15 minutes)	De-encapsulation (5-10 minutes)
Can Take Aliquots	No	No	Yes	No
Slows Degradation	Only in low-humidity conditions	Yes Likely 10s-100s of years	Yes 10s-100s of years	Yes 1000s of years
Scalable	No	Maybe	Yes	No

Caching nucleic acids


Peer-reviewed publications on proof-of-concept

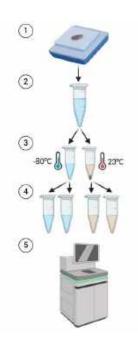
10.1021/acsami.1c14985 10.1038/s41563-021-01021-3 Storage of genomes & RNA Random access retrieval

Intellectual Property

Growing patent portfolio supporting core platform technology Cache DNA, Inc. has rights to the methods described herein

Recovery Rate

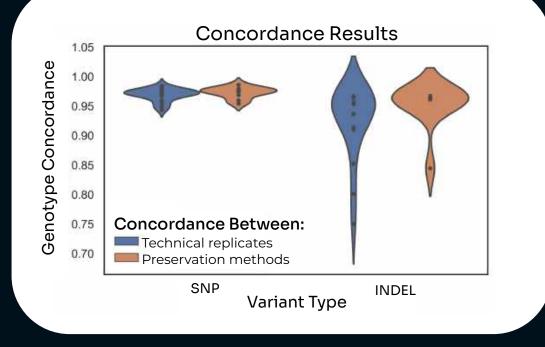
Note: Recent Caching of FFPE-derived DNA shows mean recovery rate of 93%.


Partnering with University Health Network, Princess Margaret Cancer Research Centre (PM)

Cache is committed to preserving nucleic acids **without compromising quality.** We understand these **samples are precious,** vital for **patient well-being,** and key to **enabling research** to help future patients.

We have partnered with PM to:

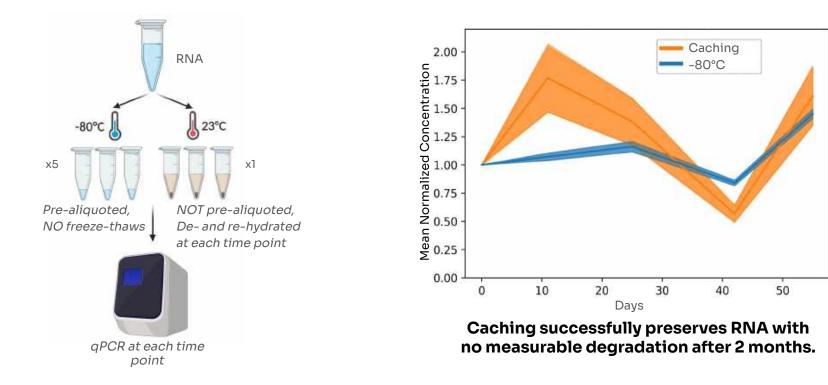
- 1. Encapsulate a greater diversity of nucleic acid origins
- 2. Perform a rigorous evaluation of sequence-level changes


Aim 1 Experimental Overview

- 1. 10 formalin fixed paraffin embedded (FFPE) tumor samples
- 2. DNA was extracted and shipped to Cache.
- 3. Half of each sample was kept frozen, half was Cached.
- 4. After 1 month, samples were retrieved and split as technical replicates.
- 5. All 40 samples were prepared for whole genome sequencing (WGS) and

sequenced with a NovaSeq.

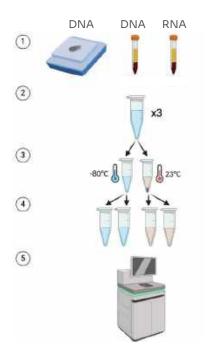
Result: Sequence Concordance Established


Please Note:

- Caching does not alter DNA sequences.
- We show whole genome sequence concordance between -80°C and Caching.

The Mutect2 variant caller was used on each sample to evaluate:

- Technical replicate concordance
- Preservation method concordance


Preliminary Data Motivating Aim 2 (RNA)

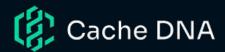
Successful Completion Leads to Aim 2:

- 1. Caching is a **modular** part of UHN's typical pipeline
 - Utilizing the UHN whole genome and transcriptome sequencing (WGTS) pipeline
 - Evaluate **concordance**
- 2. Caching at **scale**
- 3. Caching of **RNA** clinical samples

Aim 2 Experimental Overview

- 19 patients identified. Two DNA samples (paired tumor-normal), one RNA sample per patient.
- 2. DNA/RNA extracted and shipped to Cache.
- 3. Half of each sample kept frozen, half Cached.
- 4. After 1 month, samples retrieved and split in two for technical replicates.
- 5. All 57 (19 x 3) samples and their replicates (a total of 114 samples) shipped to UHN lab and run through their WGTS pipeline.

Summary


- 1. Cache preserves DNA and RNA at room temperature for long periods of time and does not compromise on quality
- 2. Cache is working with UHN to determine sequence concordance for DNA and RNA
 - We have found whole genome sequencing concordance between -80°C and Caching
- 3. Unless **you** act, current problems with nucleic acid preservation will persist. We want to live in a world with no freezers. Join us!

Acknowledgements

Farnoosh Abbas-Aghababazadeh Benjamin Haibe-Kains Celeste Yu Philippe L. Bedard

Lee Organick

Michael Blas

James Banal

